123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- <?php
- namespace BN;
- use \Exception;
- use \BI\BigInteger;
- class Red
- {
- public $m;
- function __construct($m) {
- if( is_string($m) )
- $this->m = Red::primeByName($m);
- else
- $this->m = $m;
- if( !$this->m->gtn(1) )
- throw new Exception("Modulus must be greater than 1");
- }
- public static function primeByName($name)
- {
- switch($name) {
- case "k256":
- return new BN("ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f", 16);
- case "p224":
- return new BN("ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001", 16);
- case "p192":
- return new BN("ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff", 16);
- case "p25519":
- return new BN("7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed", 16);
- default:
- throw new Exception("Unknown prime name " . $name);
- }
- }
- public function verify1(BN $num)
- {
- if (assert_options(ASSERT_ACTIVE)) assert(!$num->negative()); //,"red works only with positives");
- assert($num->red); //, "red works only with red numbers");
- }
- public function verify2(BN $a, BN $b)
- {
- if (assert_options(ASSERT_ACTIVE)) assert(!$a->negative() && !$b->negative()); //, "red works only with positives");
- assert($a->red && ($a->red == $b->red)); //, "red works only with red numbers");
- }
- public function imod(BN &$a) {
- return $a->umod($this->m)->_forceRed($this);
- }
- public function neg(BN $a)
- {
- if( $a->isZero() )
- return $a->_clone();
- return $this->m->sub($a)->_forceRed($this);
- }
- public function add(BN $a, BN $b)
- {
- $this->verify2($a, $b);
- $res = $a->add($b);
- if( $res->cmp($this->m) >= 0 )
- $res->isub($this->m);
- return $res->_forceRed($this);
- }
- public function iadd(BN &$a, BN $b)
- {
- $this->verify2($a, $b);
- $a->iadd($b);
- if( $a->cmp($this->m) >= 0 )
- $a->isub($this->m);
- return $a;
- }
- public function sub(BN $a, BN $b)
- {
- $this->verify2($a, $b);
- $res = $a->sub($b);
- if( $res->negative() )
- $res->iadd($this->m);
- return $res->_forceRed($this);
- }
- public function isub(BN &$a, $b)
- {
- $this->verify2($a, $b);
- $a->isub($b);
- if( $a->negative() )
- $a->iadd($this->m);
- return $a;
- }
- public function shl(BN $a, $num) {
- $this->verify1($a);
- return $this->imod($a->ushln($num));
- }
- public function imul(BN &$a, BN $b) {
- $this->verify2($a, $b);
- $res = $a->imul($b);
- return $this->imod($res);
- }
- public function mul(BN $a, BN $b) {
- $this->verify2($a, $b);
- $res = $a->mul($b);
- return $this->imod($res);
- }
- public function sqr(BN $a) {
- $res = $a->_clone();
- return $this->imul($res, $a);
- }
- public function isqr(BN &$a) {
- return $this->imul($a, $a);
- }
- public function sqrt(BN $a) {
- if ($a->isZero())
- return $a->_clone();
- $mod3 = $this->m->andln(3);
- assert($mod3 % 2 == 1);
- // Fast case
- if ($mod3 == 3) {
- $pow = $this->m->add(new BN(1))->iushrn(2);
- return $this->pow($a, $pow);
- }
- // Tonelli-Shanks algorithm (Totally unoptimized and slow)
- //
- // Find Q and S, that Q * 2 ^ S = (P - 1)
- $q = $this->m->subn(1);
- $s = 0;
- while (!$q->isZero() && $q->andln(1) == 0) {
- $s++;
- $q->iushrn(1);
- }
- if (assert_options(ASSERT_ACTIVE)) assert(!$q->isZero());
- $one = (new BN(1))->toRed($this);
- $nOne = $one->redNeg();
- // Find quadratic non-residue
- // NOTE: Max is such because of generalized Riemann hypothesis.
- $lpow = $this->m->subn(1)->iushrn(1);
- $z = $this->m->bitLength();
- $z = (new BN(2 * $z * $z))->toRed($this);
- while ($this->pow($z, $lpow)->cmp($nOne) != 0) {
- $z->redIAdd($nOne);
- }
- $c = $this->pow($z, $q);
- $r = $this->pow($a, $q->addn(1)->iushrn(1));
- $t = $this->pow($a, $q);
- $m = $s;
- while ($t->cmp($one) != 0) {
- $tmp = $t;
- for ($i = 0; $tmp->cmp($one) != 0; $i++) {
- $tmp = $tmp->redSqr();
- }
- if ($i >= $m) {
- throw new \Exception("Assertion failed");
- }
- if ($m - $i - 1 > 54) {
- $b = $this->pow($c, (new BN(1))->iushln($m - $i - 1));
- } else {
- $b = clone($c);
- $b->bi = $c->bi->powMod(1 << ($m - $i - 1), $this->m->bi);
- }
- $r = $r->redMul($b);
- $c = $b->redSqr();
- $t = $t->redMul($c);
- $m = $i;
- }
- return $r;
- }
- public function invm(BN &$a) {
- $res = $a->invm($this->m);
- return $this->imod($res);
- }
- public function pow(BN $a, BN $num) {
- $r = clone($a);
- $r->bi = $a->bi->powMod($num->bi, $this->m->bi);
- return $r;
- }
- public function convertTo(BN $num) {
- $r = $num->umod($this->m);
- return $r === $num ? $r->_clone() : $r;
- }
- public function convertFrom(BN $num) {
- $res = $num->_clone();
- $res->red = null;
- return $res;
- }
- }
- ?>
|