| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- <?php
- /*
- * Copyright 2007 ZXing authors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- namespace Zxing\Common;
- /**
- * <p>This class implements a perspective transform in two dimensions. Given four source and four
- * destination points, it will compute the transformation implied between them. The code is based
- * directly upon section 3.4.2 of George Wolberg's "Digital Image Warping"; see pages 54-56.</p>
- *
- * @author Sean Owen
- */
- final class PerspectiveTransform
- {
- private function __construct(private $a11, private $a21, private $a31, private $a12, private $a22, private $a32, private $a13, private $a23, private $a33)
- {
- }
- public static function quadrilateralToQuadrilateral(
- $x0,
- $y0,
- $x1,
- $y1,
- $x2,
- $y2,
- $x3,
- $y3,
- $x0p,
- $y0p,
- $x1p,
- $y1p,
- $x2p,
- $y2p,
- $x3p,
- $y3p
- ) {
- $qToS = self::quadrilateralToSquare($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3);
- $sToQ = self::squareToQuadrilateral($x0p, $y0p, $x1p, $y1p, $x2p, $y2p, $x3p, $y3p);
- return $sToQ->times($qToS);
- }
- public static function quadrilateralToSquare(
- $x0,
- $y0,
- $x1,
- $y1,
- $x2,
- $y2,
- $x3,
- $y3
- ) {
- // Here, the adjoint serves as the inverse:
- return self::squareToQuadrilateral($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3)->buildAdjoint();
- }
- public function buildAdjoint(): \Zxing\Common\PerspectiveTransform
- {
- // Adjoint is the transpose of the cofactor matrix:
- return new PerspectiveTransform(
- $this->a22 * $this->a33 - $this->a23 * $this->a32,
- $this->a23 * $this->a31 - $this->a21 * $this->a33,
- $this->a21 * $this->a32 - $this->a22 * $this->a31,
- $this->a13 * $this->a32 - $this->a12 * $this->a33,
- $this->a11 * $this->a33 - $this->a13 * $this->a31,
- $this->a12 * $this->a31 - $this->a11 * $this->a32,
- $this->a12 * $this->a23 - $this->a13 * $this->a22,
- $this->a13 * $this->a21 - $this->a11 * $this->a23,
- $this->a11 * $this->a22 - $this->a12 * $this->a21
- );
- }
- public static function squareToQuadrilateral(
- $x0,
- $y0,
- $x1,
- $y1,
- $x2,
- $y2,
- $x3,
- $y3
- ): \Zxing\Common\PerspectiveTransform {
- $dx3 = $x0 - $x1 + $x2 - $x3;
- $dy3 = $y0 - $y1 + $y2 - $y3;
- if ($dx3 == 0.0 && $dy3 == 0.0) {
- // Affine
- return new PerspectiveTransform(
- $x1 - $x0,
- $x2 - $x1,
- $x0,
- $y1 - $y0,
- $y2 - $y1,
- $y0,
- 0.0,
- 0.0,
- 1.0
- );
- } else {
- $dx1 = $x1 - $x2;
- $dx2 = $x3 - $x2;
- $dy1 = $y1 - $y2;
- $dy2 = $y3 - $y2;
- $denominator = $dx1 * $dy2 - $dx2 * $dy1;
- $a13 = ($dx3 * $dy2 - $dx2 * $dy3) / $denominator;
- $a23 = ($dx1 * $dy3 - $dx3 * $dy1) / $denominator;
- return new PerspectiveTransform(
- $x1 - $x0 + $a13 * $x1,
- $x3 - $x0 + $a23 * $x3,
- $x0,
- $y1 - $y0 + $a13 * $y1,
- $y3 - $y0 + $a23 * $y3,
- $y0,
- $a13,
- $a23,
- 1.0
- );
- }
- }
- public function times($other): \Zxing\Common\PerspectiveTransform
- {
- return new PerspectiveTransform(
- $this->a11 * $other->a11 + $this->a21 * $other->a12 + $this->a31 * $other->a13,
- $this->a11 * $other->a21 + $this->a21 * $other->a22 + $this->a31 * $other->a23,
- $this->a11 * $other->a31 + $this->a21 * $other->a32 + $this->a31 * $other->a33,
- $this->a12 * $other->a11 + $this->a22 * $other->a12 + $this->a32 * $other->a13,
- $this->a12 * $other->a21 + $this->a22 * $other->a22 + $this->a32 * $other->a23,
- $this->a12 * $other->a31 + $this->a22 * $other->a32 + $this->a32 * $other->a33,
- $this->a13 * $other->a11 + $this->a23 * $other->a12 + $this->a33 * $other->a13,
- $this->a13 * $other->a21 + $this->a23 * $other->a22 + $this->a33 * $other->a23,
- $this->a13 * $other->a31 + $this->a23 * $other->a32 + $this->a33 * $other->a33
- );
- }
- public function transformPoints(&$points, &$yValues = 0): void
- {
- if ($yValues) {
- $this->transformPoints_($points, $yValues);
- return;
- }
- $max = is_countable($points) ? count($points) : 0;
- $a11 = $this->a11;
- $a12 = $this->a12;
- $a13 = $this->a13;
- $a21 = $this->a21;
- $a22 = $this->a22;
- $a23 = $this->a23;
- $a31 = $this->a31;
- $a32 = $this->a32;
- $a33 = $this->a33;
- for ($i = 0; $i < $max; $i += 2) {
- $x = $points[$i];
- $y = $points[$i + 1];
- $denominator = $a13 * $x + $a23 * $y + $a33;
- $points[$i] = ($a11 * $x + $a21 * $y + $a31) / $denominator;
- $points[$i + 1] = ($a12 * $x + $a22 * $y + $a32) / $denominator;
- }
- }
- public function transformPoints_(&$xValues, &$yValues): void
- {
- $n = is_countable($xValues) ? count($xValues) : 0;
- for ($i = 0; $i < $n; $i++) {
- $x = $xValues[$i];
- $y = $yValues[$i];
- $denominator = $this->a13 * $x + $this->a23 * $y + $this->a33;
- $xValues[$i] = ($this->a11 * $x + $this->a21 * $y + $this->a31) / $denominator;
- $yValues[$i] = ($this->a12 * $x + $this->a22 * $y + $this->a32) / $denominator;
- }
- }
- }
|