*/ trait Secp192k1 { /* * The elliptic curve domain parameters over Fp associated with a Koblitz curve secp192k1 are * specified by the sextuple T = (p, a, b, G, n, h) where the finite field Fp is defined by: */ /** * The base point G in uncompressed form in hex: * * @var string */ public $G = '04db4ff10ec057e9ae26b07d0280b7f4341da5d1b1eae06c7d9b2f2f6d9c5628a7844163d015be86344082aa88d95e2f9d'; /** * 2^192 − 2^32 − 2^12 − 2^8 − 2^7 − 2^6 − 2^3 − 1 in hex: * * @var string */ public $p_hex = '0xfffffffffffffffffffffffffffffffffffffffeffffee37'; /** * 2^192 − 2^32 − 2^12 − 2^8 − 2^7 − 2^6 − 2^3 − 1 in decimal: * * @var string */ public $p = '6277101735386680763835789423207666416102355444459739541047'; /** * The curve E: y^2 = x^3 + ax + b over Fp, where a in hex: * * @var string */ public $a_hex = '0x00'; /** * The curve E: y^2 = x^3 + ax + b over Fp, where a in decimal: * * @var string */ public $a = '0'; /** * The curve E: y^2 = x^3 + ax + b over Fp, where b in hex: * * @var string */ public $b_hex = '0x03'; /** * The curve E: y^2 = x^3 + ax + b over Fp, where b in decimal: * * @var string */ public $b = '3'; /** * The order n of G in hex: * * @var string */ public $n_hex = '0xfffffffffffffffffffffffe26f2fc170f69466a74defd8d'; /** * The order n of G in decimal: * * @var string */ public $n = '6277101735386680763835789423061264271957123915200845512077'; /** * The cofactor in hex: * * @var string */ public $h_hex = '0x01'; /** * The cofactor in decimal: * * @var string */ public $h = '1'; /** * X-coordinate of G in hex: * * @var string */ public $Gx_hex = '0xdb4ff10ec057e9ae26b07d0280b7f4341da5d1b1eae06c7d'; /** * X-coordinate of G in decimal: * * @var string */ public $Gx = '5377521262291226325198505011805525673063229037935769709693'; /** * Y-coordinate of G in hex: * * @var string */ public $Gy_hex = '0x9b2f2f6d9c5628a7844163d015be86344082aa88d95e2f9d'; /** * Y-coordinate of G in decimal: * * @var string */ public $Gy = '3805108391982600717572440947423858335415441070543209377693'; }