var _vector = require("./vector"); var v2Create = _vector.create; var v2DistSquare = _vector.distSquare; /** * 曲线辅助模块 * @module zrender/core/curve * @author pissang(https://www.github.com/pissang) */ var mathPow = Math.pow; var mathSqrt = Math.sqrt; var EPSILON = 1e-8; var EPSILON_NUMERIC = 1e-4; var THREE_SQRT = mathSqrt(3); var ONE_THIRD = 1 / 3; // 临时变量 var _v0 = v2Create(); var _v1 = v2Create(); var _v2 = v2Create(); function isAroundZero(val) { return val > -EPSILON && val < EPSILON; } function isNotAroundZero(val) { return val > EPSILON || val < -EPSILON; } /** * 计算三次贝塞尔值 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {number} */ function cubicAt(p0, p1, p2, p3, t) { var onet = 1 - t; return onet * onet * (onet * p0 + 3 * t * p1) + t * t * (t * p3 + 3 * onet * p2); } /** * 计算三次贝塞尔导数值 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {number} */ function cubicDerivativeAt(p0, p1, p2, p3, t) { var onet = 1 - t; return 3 * (((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet + (p3 - p2) * t * t); } /** * 计算三次贝塞尔方程根,使用盛金公式 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} val * @param {Array.} roots * @return {number} 有效根数目 */ function cubicRootAt(p0, p1, p2, p3, val, roots) { // Evaluate roots of cubic functions var a = p3 + 3 * (p1 - p2) - p0; var b = 3 * (p2 - p1 * 2 + p0); var c = 3 * (p1 - p0); var d = p0 - val; var A = b * b - 3 * a * c; var B = b * c - 9 * a * d; var C = c * c - 3 * b * d; var n = 0; if (isAroundZero(A) && isAroundZero(B)) { if (isAroundZero(b)) { roots[0] = 0; } else { var t1 = -c / b; //t1, t2, t3, b is not zero if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } } else { var disc = B * B - 4 * A * C; if (isAroundZero(disc)) { var K = B / A; var t1 = -b / a + K; // t1, a is not zero var t2 = -K / 2; // t2, t3 if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } } else if (disc > 0) { var discSqrt = mathSqrt(disc); var Y1 = A * b + 1.5 * a * (-B + discSqrt); var Y2 = A * b + 1.5 * a * (-B - discSqrt); if (Y1 < 0) { Y1 = -mathPow(-Y1, ONE_THIRD); } else { Y1 = mathPow(Y1, ONE_THIRD); } if (Y2 < 0) { Y2 = -mathPow(-Y2, ONE_THIRD); } else { Y2 = mathPow(Y2, ONE_THIRD); } var t1 = (-b - (Y1 + Y2)) / (3 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } else { var T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A)); var theta = Math.acos(T) / 3; var ASqrt = mathSqrt(A); var tmp = Math.cos(theta); var t1 = (-b - 2 * ASqrt * tmp) / (3 * a); var t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a); var t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } if (t3 >= 0 && t3 <= 1) { roots[n++] = t3; } } } return n; } /** * 计算三次贝塞尔方程极限值的位置 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {Array.} extrema * @return {number} 有效数目 */ function cubicExtrema(p0, p1, p2, p3, extrema) { var b = 6 * p2 - 12 * p1 + 6 * p0; var a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2; var c = 3 * p1 - 3 * p0; var n = 0; if (isAroundZero(a)) { if (isNotAroundZero(b)) { var t1 = -c / b; if (t1 >= 0 && t1 <= 1) { extrema[n++] = t1; } } } else { var disc = b * b - 4 * a * c; if (isAroundZero(disc)) { extrema[0] = -b / (2 * a); } else if (disc > 0) { var discSqrt = mathSqrt(disc); var t1 = (-b + discSqrt) / (2 * a); var t2 = (-b - discSqrt) / (2 * a); if (t1 >= 0 && t1 <= 1) { extrema[n++] = t1; } if (t2 >= 0 && t2 <= 1) { extrema[n++] = t2; } } } return n; } /** * 细分三次贝塞尔曲线 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @param {Array.} out */ function cubicSubdivide(p0, p1, p2, p3, t, out) { var p01 = (p1 - p0) * t + p0; var p12 = (p2 - p1) * t + p1; var p23 = (p3 - p2) * t + p2; var p012 = (p12 - p01) * t + p01; var p123 = (p23 - p12) * t + p12; var p0123 = (p123 - p012) * t + p012; // Seg0 out[0] = p0; out[1] = p01; out[2] = p012; out[3] = p0123; // Seg1 out[4] = p0123; out[5] = p123; out[6] = p23; out[7] = p3; } /** * 投射点到三次贝塞尔曲线上,返回投射距离。 * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。 * @param {number} x0 * @param {number} y0 * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @param {number} x3 * @param {number} y3 * @param {number} x * @param {number} y * @param {Array.} [out] 投射点 * @return {number} */ function cubicProjectPoint(x0, y0, x1, y1, x2, y2, x3, y3, x, y, out) { // http://pomax.github.io/bezierinfo/#projections var t; var interval = 0.005; var d = Infinity; var prev; var next; var d1; var d2; _v0[0] = x; _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值 // PENDING for (var _t = 0; _t < 1; _t += 0.05) { _v1[0] = cubicAt(x0, x1, x2, x3, _t); _v1[1] = cubicAt(y0, y1, y2, y3, _t); d1 = v2DistSquare(_v0, _v1); if (d1 < d) { t = _t; d = d1; } } d = Infinity; // At most 32 iteration for (var i = 0; i < 32; i++) { if (interval < EPSILON_NUMERIC) { break; } prev = t - interval; next = t + interval; // t - interval _v1[0] = cubicAt(x0, x1, x2, x3, prev); _v1[1] = cubicAt(y0, y1, y2, y3, prev); d1 = v2DistSquare(_v1, _v0); if (prev >= 0 && d1 < d) { t = prev; d = d1; } else { // t + interval _v2[0] = cubicAt(x0, x1, x2, x3, next); _v2[1] = cubicAt(y0, y1, y2, y3, next); d2 = v2DistSquare(_v2, _v0); if (next <= 1 && d2 < d) { t = next; d = d2; } else { interval *= 0.5; } } } // t if (out) { out[0] = cubicAt(x0, x1, x2, x3, t); out[1] = cubicAt(y0, y1, y2, y3, t); } // console.log(interval, i); return mathSqrt(d); } /** * 计算二次方贝塞尔值 * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @return {number} */ function quadraticAt(p0, p1, p2, t) { var onet = 1 - t; return onet * (onet * p0 + 2 * t * p1) + t * t * p2; } /** * 计算二次方贝塞尔导数值 * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @return {number} */ function quadraticDerivativeAt(p0, p1, p2, t) { return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1)); } /** * 计算二次方贝塞尔方程根 * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @param {Array.} roots * @return {number} 有效根数目 */ function quadraticRootAt(p0, p1, p2, val, roots) { var a = p0 - 2 * p1 + p2; var b = 2 * (p1 - p0); var c = p0 - val; var n = 0; if (isAroundZero(a)) { if (isNotAroundZero(b)) { var t1 = -c / b; if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } } else { var disc = b * b - 4 * a * c; if (isAroundZero(disc)) { var t1 = -b / (2 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } else if (disc > 0) { var discSqrt = mathSqrt(disc); var t1 = (-b + discSqrt) / (2 * a); var t2 = (-b - discSqrt) / (2 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } } } return n; } /** * 计算二次贝塞尔方程极限值 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @return {number} */ function quadraticExtremum(p0, p1, p2) { var divider = p0 + p2 - 2 * p1; if (divider === 0) { // p1 is center of p0 and p2 return 0.5; } else { return (p0 - p1) / divider; } } /** * 细分二次贝塞尔曲线 * @memberOf module:zrender/core/curve * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @param {Array.} out */ function quadraticSubdivide(p0, p1, p2, t, out) { var p01 = (p1 - p0) * t + p0; var p12 = (p2 - p1) * t + p1; var p012 = (p12 - p01) * t + p01; // Seg0 out[0] = p0; out[1] = p01; out[2] = p012; // Seg1 out[3] = p012; out[4] = p12; out[5] = p2; } /** * 投射点到二次贝塞尔曲线上,返回投射距离。 * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。 * @param {number} x0 * @param {number} y0 * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @param {number} x * @param {number} y * @param {Array.} out 投射点 * @return {number} */ function quadraticProjectPoint(x0, y0, x1, y1, x2, y2, x, y, out) { // http://pomax.github.io/bezierinfo/#projections var t; var interval = 0.005; var d = Infinity; _v0[0] = x; _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值 // PENDING for (var _t = 0; _t < 1; _t += 0.05) { _v1[0] = quadraticAt(x0, x1, x2, _t); _v1[1] = quadraticAt(y0, y1, y2, _t); var d1 = v2DistSquare(_v0, _v1); if (d1 < d) { t = _t; d = d1; } } d = Infinity; // At most 32 iteration for (var i = 0; i < 32; i++) { if (interval < EPSILON_NUMERIC) { break; } var prev = t - interval; var next = t + interval; // t - interval _v1[0] = quadraticAt(x0, x1, x2, prev); _v1[1] = quadraticAt(y0, y1, y2, prev); var d1 = v2DistSquare(_v1, _v0); if (prev >= 0 && d1 < d) { t = prev; d = d1; } else { // t + interval _v2[0] = quadraticAt(x0, x1, x2, next); _v2[1] = quadraticAt(y0, y1, y2, next); var d2 = v2DistSquare(_v2, _v0); if (next <= 1 && d2 < d) { t = next; d = d2; } else { interval *= 0.5; } } } // t if (out) { out[0] = quadraticAt(x0, x1, x2, t); out[1] = quadraticAt(y0, y1, y2, t); } // console.log(interval, i); return mathSqrt(d); } exports.cubicAt = cubicAt; exports.cubicDerivativeAt = cubicDerivativeAt; exports.cubicRootAt = cubicRootAt; exports.cubicExtrema = cubicExtrema; exports.cubicSubdivide = cubicSubdivide; exports.cubicProjectPoint = cubicProjectPoint; exports.quadraticAt = quadraticAt; exports.quadraticDerivativeAt = quadraticDerivativeAt; exports.quadraticRootAt = quadraticRootAt; exports.quadraticExtremum = quadraticExtremum; exports.quadraticSubdivide = quadraticSubdivide; exports.quadraticProjectPoint = quadraticProjectPoint;