123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- var _vector = require("./vector");
- var v2Create = _vector.create;
- var v2DistSquare = _vector.distSquare;
- /**
- * 曲线辅助模块
- * @module zrender/core/curve
- * @author pissang(https://www.github.com/pissang)
- */
- var mathPow = Math.pow;
- var mathSqrt = Math.sqrt;
- var EPSILON = 1e-8;
- var EPSILON_NUMERIC = 1e-4;
- var THREE_SQRT = mathSqrt(3);
- var ONE_THIRD = 1 / 3; // 临时变量
- var _v0 = v2Create();
- var _v1 = v2Create();
- var _v2 = v2Create();
- function isAroundZero(val) {
- return val > -EPSILON && val < EPSILON;
- }
- function isNotAroundZero(val) {
- return val > EPSILON || val < -EPSILON;
- }
- /**
- * 计算三次贝塞尔值
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} p3
- * @param {number} t
- * @return {number}
- */
- function cubicAt(p0, p1, p2, p3, t) {
- var onet = 1 - t;
- return onet * onet * (onet * p0 + 3 * t * p1) + t * t * (t * p3 + 3 * onet * p2);
- }
- /**
- * 计算三次贝塞尔导数值
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} p3
- * @param {number} t
- * @return {number}
- */
- function cubicDerivativeAt(p0, p1, p2, p3, t) {
- var onet = 1 - t;
- return 3 * (((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet + (p3 - p2) * t * t);
- }
- /**
- * 计算三次贝塞尔方程根,使用盛金公式
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} p3
- * @param {number} val
- * @param {Array.<number>} roots
- * @return {number} 有效根数目
- */
- function cubicRootAt(p0, p1, p2, p3, val, roots) {
- // Evaluate roots of cubic functions
- var a = p3 + 3 * (p1 - p2) - p0;
- var b = 3 * (p2 - p1 * 2 + p0);
- var c = 3 * (p1 - p0);
- var d = p0 - val;
- var A = b * b - 3 * a * c;
- var B = b * c - 9 * a * d;
- var C = c * c - 3 * b * d;
- var n = 0;
- if (isAroundZero(A) && isAroundZero(B)) {
- if (isAroundZero(b)) {
- roots[0] = 0;
- } else {
- var t1 = -c / b; //t1, t2, t3, b is not zero
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- }
- } else {
- var disc = B * B - 4 * A * C;
- if (isAroundZero(disc)) {
- var K = B / A;
- var t1 = -b / a + K; // t1, a is not zero
- var t2 = -K / 2; // t2, t3
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- if (t2 >= 0 && t2 <= 1) {
- roots[n++] = t2;
- }
- } else if (disc > 0) {
- var discSqrt = mathSqrt(disc);
- var Y1 = A * b + 1.5 * a * (-B + discSqrt);
- var Y2 = A * b + 1.5 * a * (-B - discSqrt);
- if (Y1 < 0) {
- Y1 = -mathPow(-Y1, ONE_THIRD);
- } else {
- Y1 = mathPow(Y1, ONE_THIRD);
- }
- if (Y2 < 0) {
- Y2 = -mathPow(-Y2, ONE_THIRD);
- } else {
- Y2 = mathPow(Y2, ONE_THIRD);
- }
- var t1 = (-b - (Y1 + Y2)) / (3 * a);
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- } else {
- var T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A));
- var theta = Math.acos(T) / 3;
- var ASqrt = mathSqrt(A);
- var tmp = Math.cos(theta);
- var t1 = (-b - 2 * ASqrt * tmp) / (3 * a);
- var t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a);
- var t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a);
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- if (t2 >= 0 && t2 <= 1) {
- roots[n++] = t2;
- }
- if (t3 >= 0 && t3 <= 1) {
- roots[n++] = t3;
- }
- }
- }
- return n;
- }
- /**
- * 计算三次贝塞尔方程极限值的位置
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} p3
- * @param {Array.<number>} extrema
- * @return {number} 有效数目
- */
- function cubicExtrema(p0, p1, p2, p3, extrema) {
- var b = 6 * p2 - 12 * p1 + 6 * p0;
- var a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2;
- var c = 3 * p1 - 3 * p0;
- var n = 0;
- if (isAroundZero(a)) {
- if (isNotAroundZero(b)) {
- var t1 = -c / b;
- if (t1 >= 0 && t1 <= 1) {
- extrema[n++] = t1;
- }
- }
- } else {
- var disc = b * b - 4 * a * c;
- if (isAroundZero(disc)) {
- extrema[0] = -b / (2 * a);
- } else if (disc > 0) {
- var discSqrt = mathSqrt(disc);
- var t1 = (-b + discSqrt) / (2 * a);
- var t2 = (-b - discSqrt) / (2 * a);
- if (t1 >= 0 && t1 <= 1) {
- extrema[n++] = t1;
- }
- if (t2 >= 0 && t2 <= 1) {
- extrema[n++] = t2;
- }
- }
- }
- return n;
- }
- /**
- * 细分三次贝塞尔曲线
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} p3
- * @param {number} t
- * @param {Array.<number>} out
- */
- function cubicSubdivide(p0, p1, p2, p3, t, out) {
- var p01 = (p1 - p0) * t + p0;
- var p12 = (p2 - p1) * t + p1;
- var p23 = (p3 - p2) * t + p2;
- var p012 = (p12 - p01) * t + p01;
- var p123 = (p23 - p12) * t + p12;
- var p0123 = (p123 - p012) * t + p012; // Seg0
- out[0] = p0;
- out[1] = p01;
- out[2] = p012;
- out[3] = p0123; // Seg1
- out[4] = p0123;
- out[5] = p123;
- out[6] = p23;
- out[7] = p3;
- }
- /**
- * 投射点到三次贝塞尔曲线上,返回投射距离。
- * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
- * @param {number} x0
- * @param {number} y0
- * @param {number} x1
- * @param {number} y1
- * @param {number} x2
- * @param {number} y2
- * @param {number} x3
- * @param {number} y3
- * @param {number} x
- * @param {number} y
- * @param {Array.<number>} [out] 投射点
- * @return {number}
- */
- function cubicProjectPoint(x0, y0, x1, y1, x2, y2, x3, y3, x, y, out) {
- // http://pomax.github.io/bezierinfo/#projections
- var t;
- var interval = 0.005;
- var d = Infinity;
- var prev;
- var next;
- var d1;
- var d2;
- _v0[0] = x;
- _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值
- // PENDING
- for (var _t = 0; _t < 1; _t += 0.05) {
- _v1[0] = cubicAt(x0, x1, x2, x3, _t);
- _v1[1] = cubicAt(y0, y1, y2, y3, _t);
- d1 = v2DistSquare(_v0, _v1);
- if (d1 < d) {
- t = _t;
- d = d1;
- }
- }
- d = Infinity; // At most 32 iteration
- for (var i = 0; i < 32; i++) {
- if (interval < EPSILON_NUMERIC) {
- break;
- }
- prev = t - interval;
- next = t + interval; // t - interval
- _v1[0] = cubicAt(x0, x1, x2, x3, prev);
- _v1[1] = cubicAt(y0, y1, y2, y3, prev);
- d1 = v2DistSquare(_v1, _v0);
- if (prev >= 0 && d1 < d) {
- t = prev;
- d = d1;
- } else {
- // t + interval
- _v2[0] = cubicAt(x0, x1, x2, x3, next);
- _v2[1] = cubicAt(y0, y1, y2, y3, next);
- d2 = v2DistSquare(_v2, _v0);
- if (next <= 1 && d2 < d) {
- t = next;
- d = d2;
- } else {
- interval *= 0.5;
- }
- }
- } // t
- if (out) {
- out[0] = cubicAt(x0, x1, x2, x3, t);
- out[1] = cubicAt(y0, y1, y2, y3, t);
- } // console.log(interval, i);
- return mathSqrt(d);
- }
- /**
- * 计算二次方贝塞尔值
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} t
- * @return {number}
- */
- function quadraticAt(p0, p1, p2, t) {
- var onet = 1 - t;
- return onet * (onet * p0 + 2 * t * p1) + t * t * p2;
- }
- /**
- * 计算二次方贝塞尔导数值
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} t
- * @return {number}
- */
- function quadraticDerivativeAt(p0, p1, p2, t) {
- return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1));
- }
- /**
- * 计算二次方贝塞尔方程根
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} t
- * @param {Array.<number>} roots
- * @return {number} 有效根数目
- */
- function quadraticRootAt(p0, p1, p2, val, roots) {
- var a = p0 - 2 * p1 + p2;
- var b = 2 * (p1 - p0);
- var c = p0 - val;
- var n = 0;
- if (isAroundZero(a)) {
- if (isNotAroundZero(b)) {
- var t1 = -c / b;
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- }
- } else {
- var disc = b * b - 4 * a * c;
- if (isAroundZero(disc)) {
- var t1 = -b / (2 * a);
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- } else if (disc > 0) {
- var discSqrt = mathSqrt(disc);
- var t1 = (-b + discSqrt) / (2 * a);
- var t2 = (-b - discSqrt) / (2 * a);
- if (t1 >= 0 && t1 <= 1) {
- roots[n++] = t1;
- }
- if (t2 >= 0 && t2 <= 1) {
- roots[n++] = t2;
- }
- }
- }
- return n;
- }
- /**
- * 计算二次贝塞尔方程极限值
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @return {number}
- */
- function quadraticExtremum(p0, p1, p2) {
- var divider = p0 + p2 - 2 * p1;
- if (divider === 0) {
- // p1 is center of p0 and p2
- return 0.5;
- } else {
- return (p0 - p1) / divider;
- }
- }
- /**
- * 细分二次贝塞尔曲线
- * @memberOf module:zrender/core/curve
- * @param {number} p0
- * @param {number} p1
- * @param {number} p2
- * @param {number} t
- * @param {Array.<number>} out
- */
- function quadraticSubdivide(p0, p1, p2, t, out) {
- var p01 = (p1 - p0) * t + p0;
- var p12 = (p2 - p1) * t + p1;
- var p012 = (p12 - p01) * t + p01; // Seg0
- out[0] = p0;
- out[1] = p01;
- out[2] = p012; // Seg1
- out[3] = p012;
- out[4] = p12;
- out[5] = p2;
- }
- /**
- * 投射点到二次贝塞尔曲线上,返回投射距离。
- * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
- * @param {number} x0
- * @param {number} y0
- * @param {number} x1
- * @param {number} y1
- * @param {number} x2
- * @param {number} y2
- * @param {number} x
- * @param {number} y
- * @param {Array.<number>} out 投射点
- * @return {number}
- */
- function quadraticProjectPoint(x0, y0, x1, y1, x2, y2, x, y, out) {
- // http://pomax.github.io/bezierinfo/#projections
- var t;
- var interval = 0.005;
- var d = Infinity;
- _v0[0] = x;
- _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值
- // PENDING
- for (var _t = 0; _t < 1; _t += 0.05) {
- _v1[0] = quadraticAt(x0, x1, x2, _t);
- _v1[1] = quadraticAt(y0, y1, y2, _t);
- var d1 = v2DistSquare(_v0, _v1);
- if (d1 < d) {
- t = _t;
- d = d1;
- }
- }
- d = Infinity; // At most 32 iteration
- for (var i = 0; i < 32; i++) {
- if (interval < EPSILON_NUMERIC) {
- break;
- }
- var prev = t - interval;
- var next = t + interval; // t - interval
- _v1[0] = quadraticAt(x0, x1, x2, prev);
- _v1[1] = quadraticAt(y0, y1, y2, prev);
- var d1 = v2DistSquare(_v1, _v0);
- if (prev >= 0 && d1 < d) {
- t = prev;
- d = d1;
- } else {
- // t + interval
- _v2[0] = quadraticAt(x0, x1, x2, next);
- _v2[1] = quadraticAt(y0, y1, y2, next);
- var d2 = v2DistSquare(_v2, _v0);
- if (next <= 1 && d2 < d) {
- t = next;
- d = d2;
- } else {
- interval *= 0.5;
- }
- }
- } // t
- if (out) {
- out[0] = quadraticAt(x0, x1, x2, t);
- out[1] = quadraticAt(y0, y1, y2, t);
- } // console.log(interval, i);
- return mathSqrt(d);
- }
- exports.cubicAt = cubicAt;
- exports.cubicDerivativeAt = cubicDerivativeAt;
- exports.cubicRootAt = cubicRootAt;
- exports.cubicExtrema = cubicExtrema;
- exports.cubicSubdivide = cubicSubdivide;
- exports.cubicProjectPoint = cubicProjectPoint;
- exports.quadraticAt = quadraticAt;
- exports.quadraticDerivativeAt = quadraticDerivativeAt;
- exports.quadraticRootAt = quadraticRootAt;
- exports.quadraticExtremum = quadraticExtremum;
- exports.quadraticSubdivide = quadraticSubdivide;
- exports.quadraticProjectPoint = quadraticProjectPoint;
|