1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- var BufferUtil = require('../utils/buffer')
- var EXP_TABLE = BufferUtil.alloc(512)
- var LOG_TABLE = BufferUtil.alloc(256)
- /**
- * Precompute the log and anti-log tables for faster computation later
- *
- * For each possible value in the galois field 2^8, we will pre-compute
- * the logarithm and anti-logarithm (exponential) of this value
- *
- * ref {@link https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders#Introduction_to_mathematical_fields}
- */
- ;(function initTables () {
- var x = 1
- for (var i = 0; i < 255; i++) {
- EXP_TABLE[i] = x
- LOG_TABLE[x] = i
- x <<= 1 // multiply by 2
- // The QR code specification says to use byte-wise modulo 100011101 arithmetic.
- // This means that when a number is 256 or larger, it should be XORed with 0x11D.
- if (x & 0x100) { // similar to x >= 256, but a lot faster (because 0x100 == 256)
- x ^= 0x11D
- }
- }
- // Optimization: double the size of the anti-log table so that we don't need to mod 255 to
- // stay inside the bounds (because we will mainly use this table for the multiplication of
- // two GF numbers, no more).
- // @see {@link mul}
- for (i = 255; i < 512; i++) {
- EXP_TABLE[i] = EXP_TABLE[i - 255]
- }
- }())
- /**
- * Returns log value of n inside Galois Field
- *
- * @param {Number} n
- * @return {Number}
- */
- exports.log = function log (n) {
- if (n < 1) throw new Error('log(' + n + ')')
- return LOG_TABLE[n]
- }
- /**
- * Returns anti-log value of n inside Galois Field
- *
- * @param {Number} n
- * @return {Number}
- */
- exports.exp = function exp (n) {
- return EXP_TABLE[n]
- }
- /**
- * Multiplies two number inside Galois Field
- *
- * @param {Number} x
- * @param {Number} y
- * @return {Number}
- */
- exports.mul = function mul (x, y) {
- if (x === 0 || y === 0) return 0
- // should be EXP_TABLE[(LOG_TABLE[x] + LOG_TABLE[y]) % 255] if EXP_TABLE wasn't oversized
- // @see {@link initTables}
- return EXP_TABLE[LOG_TABLE[x] + LOG_TABLE[y]]
- }
|